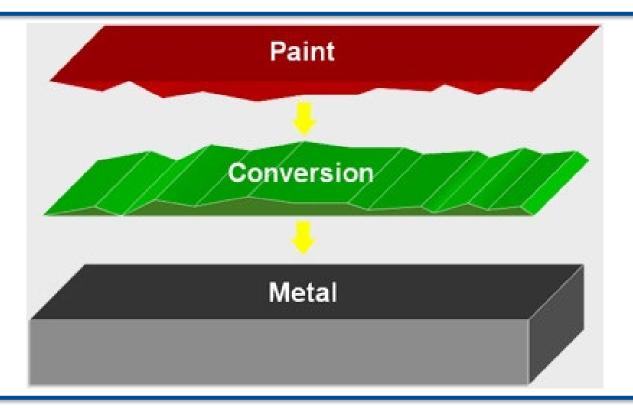
BASF We create chemistry Chemetall expect more G

Field Training Series


Iron Phosphate

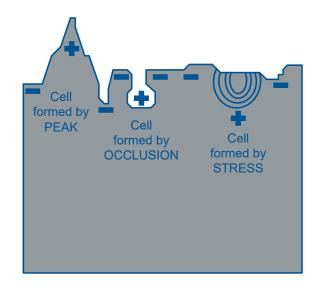
BASF/Chemetall – Technical Field Support (TFS)

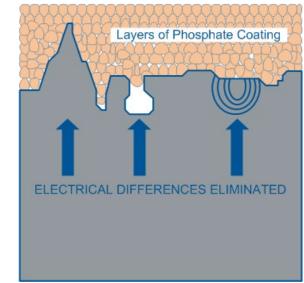
2019-08-09 (rev.0)

Conversion Coatings...

Internal Only - Confidential

Conversion Coatings... What is a Conversion Coating?

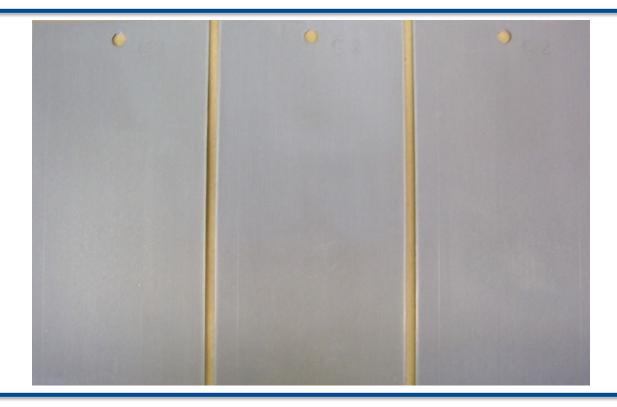

- Conversion coatings are a complete film which changes the physical and chemical nature of the metal surface
 - Physical promotes adhesion
 - Chemical promotes corrosion resistance
- Conversion coatings are adherent, insoluble, inert, crystalline or amorphous surface films
 - The coatings form as a part of the metal surface by means of a chemical reaction between the metal surface and the aqueous acidic solution
 - A portion of the base metal is converted into the resultant coating, which is much less reactive to corrosion than the original metal surface
- Thinner coating typically provide better adhesion
 - Stronger attractive forces between the paint and substrate
- Thicker coating typically provide better corrosion resistance
 - More coating that corrosive elements would have to penetrate
 - Provide better electrical insulation



Internal Only - Confidential

Conversion Coatings... How the Coating Works

- The base substrate surface is irregular and electrically conductive, therefore susceptible to corrosion
- The conversion coating imparts an equal potential to the metal surface, neutralizing the local galvanic corrosion sites
- The conversion coating is capable of inhibiting the spread of corrosion creepage under the paint


Conversion Coatings... Conversion Coating Selection Chart

Substrates	Painted Surfaces			Painted or Unpainted Surfaces		
	Iron Phosphate	Zinc Phosphate	Thin Film	Chrome Phosphate	Chrome Chromate	Non- Chrome Coatings
Iron/Steel	\checkmark	\checkmark	\checkmark			
Galvanized	✓*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Aluminum	✓*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Galvanneal	✓*	\checkmark	\checkmark			
Magnesium	✓*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

* Iron phosphate provides cleaning only for non-ferrous substrates

Iron Phosphate...

Internal Only - Confidential

Iron Phosphate... Why Do We Iron Phosphate?

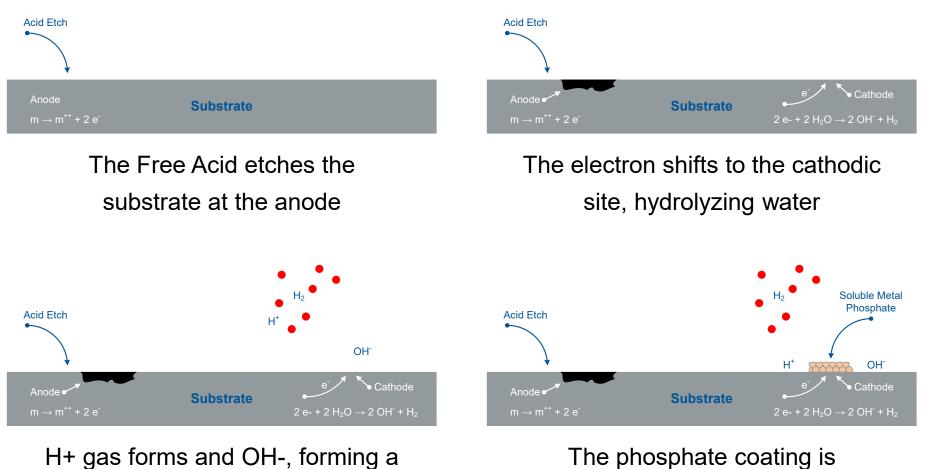
- Iron phosphate forms a coating on the substrates that:
 - Provides protection from corrosion under the subsequently applied paint film by forming a non-reactive layer that inhibits the spread of corrosion
 - Provides an excellent base for paint adhesion by enhancing the bond between paint and substrate
- A **<u>Poor</u>** phosphate coating will:
 - Degrade even the best paint system by failing to provide proper adhesion
 - Reduce corrosion protection

"You can make a poor coating perform with excellent pretreatment, but you can't make an excellent coating perform with poor pretreatment"

Internal Only - Confidential

Iron Phosphate... Basic Information

- Substrates
 - Ferrous substrates
 - Clean-only for aluminum, zinc coated and magnesium substrates
- Application methods
 - Spray
 - Immersion
 - Manual application (spraywand)
- Paint systems
 - All systems (powder, liquid, e-coat)
- Typical uses
 - Indoor products
 - Non-critical outdoor products



SEM of an amorphous iron phosphate coating

Internal Only - Confidential

Iron Phosphate... How Does the Coating Form?

localized area of high pH

deposited on the substrate

Internal Only - Confidential

Iron Phosphate... Coating Descriptions

- Coating Weight:
 - Iron Phosphate
- Appearance:

Blue, Shiny (Light)

Blue-Gray, Dull

30

 \rightarrow

 \rightarrow

to 80

- (Medium)
- $\begin{array}{ll} \rightarrow & \text{Gray to Gold, Dull} \\ \rightarrow & (\text{Heavy}) \end{array}$

g/m²

mg/ft² 0.32 to 0.86

expect more 🗘

Internal Only - Confidential

We create chemistry

